Genprative Knowledge

4 Preface

4 Getting Started
4 Workbench and Interagtive Tasks
4 Reference Library

o [&



file:///E|/users/cre/OM_doc/CATEnglish/commain.doc/src/conventions.htm
file:///E|/users/cre/OM_doc/CATEnglish/commain.doc/src/spenot.htm

Preface

The CATIA Generative Knowledge product provides you with an easy way to describe the data
used to create documents and to store this data in a script file so that it can be re-used later
on. Here are the benefits of using the generative script:

the script code itself is small in size (a few K)

the syntax is easy to grasp

it executes rapidly from CATIA

it allows you to add knowledgeware information in the form of expert rules and checks to
a document and store the whole data in a readable file.

HiEIEE N

Moreover, it offers a full compatibility with external documents by providing you with an import
capability. Features belonging to external documents can be referred to and instantiated in a

script. Of course, a document which has been generated from a script can be modified
interactively.

The present version of the product covers a broad range of mechanical features as well as
some knowledgeware features.



]

Getting Started

The scenario which is developed below helps you begin learning a new area of the CATIA knowledgeware

capabilities. It is broken down into steps and all the instructions required by the user are supplied for each
steps.

This scenario is just a quick look at the Generative Knowledge product capabilities. From any stage of this
basic scenario you can access in-depth information by using the links to the Reference Library.

To carry out the scenario below, you don't need to have any initial sample on hand as you create your initial
data from a script.

The basic methods for writing a script are conceptually simple and straightforward, they don't require any

prerequisite knowledge but it is better if you already dabble in some other script languages manipulating
objects and properties.

1. Select the Infrastructure->Generative Knowledge command from the Start menu,
then click the = icon. The Generative Script Editor is displayed.
2. Copy/Paste the script below from your browser to the Script editor:

Box isa CATPart {
BoxPart isa Part

{

Part Body i sa Body
{

Box1l isa Box // Create a Box

{
Wdth = 20. 0mm ;
Hei ght 50. Omm ;
Lengt h 10. Orm ;

}
/] Create a Hole

Hol el isa Hole ( "Face: (Brp: (Box1;2);None:())",
-8.752977,-11. 014908, 15. 00000 )
{

Di anet er =5. 0;
}
/] Create a Hole
Hol e2 i sa Hol e( "Face: (Brp: (Box1;2); None:())",
20. 185869, - 10. 918053, 15. 00000 )
{

D anet er =10. O;
}

}
}

3. Save your script file by using the File->SaveAs function of the script editor (this step is optional but
recommended).



Knowledgeware Script Editor BEi=lE

Mew

Open

B otbdainT ool

E xit / Create a Box

Width = 20, Omm ;
Height = &0 Omm ;
Lenigth = 10.0mmm ;

1
M Create a Hole
Haole1 iza Hole [ V'Face: [Brp:[Boxd ;2):Mone:[]]",
-8.752977 .-11.0714308,15.00000 ]
{

Diameter=5.0;

M Create a Hole b
Hale? iza Holel "Face:[Brp:[Bos1 :2:Mane]])".
20185369 -10.918053,15.00000 |

{
Diameter=10.0; ;I

Generate:

4. Click Generate. The following document is generated in the geometry area.

xy plane
- vz plane
Zx plane

fi—oim FParameters

o {} FanBody

4

Three geometric features have been created: Box1, Holel and Hole2. You can double-click the features
created to display their parameter values and compare them with the values specified in the script. Here are a
few comments about the resulting document with respect to the initial script:

. Objects are created with the isa function.
2. At creation, features are assigned default parameter values.
3. Parameter values can be (re-) defined in the script in statement blocks surrounded by curly braces.

4. In the Hole creation instruction, the complicated expression within the parentheses defines a point.
Don't worry about it, you won't have to type such an expression. It is captured from the geometry area.
See Capturing Data from the Geometry Area.




#3



Workbench and Interactive Tasks

The Generative Script workbench contains only one icon = | which allows you to open the
script editor. In most CATIA products, the dialog behind an icon is related to a feature creation
and the feature created is specific to the application.

In the Generative Script product, when you click the script editor icon, you are provided with a
means to create a script. This script is NOT a feature, you won't see it in the specification tree.
But from this script, you can generate features that will be displayed in the specification tree.

Using the script editor is quite straightforward. Here is a help for those of you which are not
already familiar with CATIA editing windows.

Creating a Script

Using a Script Skeleton

Generating a Document from a Script




Creating a Script

@ This task describes how to create a script for an interactive standpoint. The main task is to write the
@ :
==, proper statements. To do so, refer to Reference Library

E 1. Access the Generative Knowledge workbench by selecting the Generative Knowledge function
ey, from the Start Menu.

2. Click the icon. The Generative Script Editor is displayed.

Knowledgeware Script Editor . {Of ]
l Creates a script skeleton
.ﬂ_——_——_——
Mew — | =
Open ——__ |
Savaﬁ.ﬁxmmainhnl | Opens a CATGScript file
Save .
E «it . .
: | Saves the active script
Bisa Box with a new name
{ - [CATGScnpt extension)
4| | 3
.

3. Enter your script in the editor. Refer to the Reference Library for information on the language
syntax as well as samples illustrating how to code your script.

4. Save your script by using the File->Save or File->SaveAs command. Your script to be saved
under a file with .CATGScript extension.

#3%




Using a Script Skeleton

(@ To help you write your script, the Generative Script Editor provides you with a way to

==, Ccreate a skeleton which reflects the structure of a CATPart document.

'm 1. Access the Generative Knowledge workbench by selecting the Infrastructure->
Lty Generative Knowledge function from the Start menu.

2. Click the icon. The Generative Script Editor is displayed.

3. In Generative Script Editor, select the File->New->CATPart document
function. The dialog box below is displayed.

Docurnent narne 1M_|,|F'art

Fart name 1F'1

i
4. Fill in the fields and click OK. The associated script is created

Knowledgeware Script Editor

File

[MyPart iza CATPart
{ F1 iza Part
{ FartBody iza Body
)

}

5. To enrich this script, refer to Reference Library.
6. Save your script or generate the related document.

#3




Generating a Document from a Script

(@ The task which consists in generating a document from a script is quite

(@)

5/

2.
3.
4.

5.

straightforward. This is how you have to proceed. Note that only CATPart document
can be created in this CATIA version.

1.

Access the Generative Knowledge workbench by selecting the Infrastructure->
Generative Knowledge function from the Start menu.

Click the =l icon. The Generative Script Editor is displayed.
Enter your script in the editor or open an already existing .CATGScript file.
Click Generate. The related document is created in the geometry area. The

Reference Library gives you a number of examples.
If need be, save your script before exiting the editor.

You can add a new feature to an already existing part provided the name of the part
in the script describing this new feature is the same as the name of the part you

want to add the new feature to. This capability applies to parts generated either from
a script or from the Part Design workbench.

A3



Reference Library

The reference library describes:
« thelanguage syntax including the code structure, how to use comments, variables and so on.
» theobjectsaswell astheir properties. They are divided into two categories: the geometric features and the
knowledgeware features
« thefunctionsto create objects or instantiate objects from an imported file
« the operators used to specify where a parameter value isto be read in the script
« the constraints and transformations that can be applied to objects to specify their location in space.

Geometric Features
« body
» box
o chamfer

Knowledgewar e Features
o expert check

o expertrule
o formulas

Functions
o import
o isa

Special Characters & Operators
. ?

o o\




Constraints & Positioning

coaxiality
coincidence
distance
position
rotate
trandate



file:///E|/users/cre/OM_doc/KweEnglish/kweug.doc/src/kweScpCoincidence.htm

The Generative Script Language

Overview

The CATIA Generative Knowledge Script is a simple programming language dedicated to the CATIA feature creation. It
provides you with a means to generate most geometric and knowledgeware features making up CATIA documents from a
scripting code. The filename extension for generative scripts is .CATGScript

The Script Structure

Comments

Variables

Capturing Data from the Geometry View

Specifying Input Data

Limitations

OooOOoooad

A Few Basics

The Generative Knowledge Script is quite simple to learn and you can learn about this language in little time.To get started
programming, take a look at some examples by clicking on some items of the geometric feature list in the Reference
Library. Like other scripting languages, the Generative Knowledge script manipulates objects and object properties. In
addition, it provides you with a means to import the definitions of documents, then instantiate objects from an import file.

The Script Structure

A generative script is written in text format and is organized into statements, blocks consisting of related sets of
statements, and comments. Within a statement, you can use variables and to define variables, you can use formulas.

Generally a block consists of an instruction to create an object followed by a set of statements surrounded by braces ({ }).
Statement blocks can be nested and the most enclosing one corresponds to the document creation. When defining
properties, the semicolon (;) is a terminator.

In the outermost statement block, you must create the document intended to contain all the features to be created later on.
Right below, you must create a part. Within a part, you can create the following objects:

[J a RootMainTool, i.e. the object which represents the part body feature
[] one or more bodies

[J arule base.

mydocunent isa CATPart

{Part i sa Part
{PartBody i sa Body
{nyOoj ect isa objectType
{propertyl = ...
property2 = ... ;
}...
!
}...
}

Note that CATPart documents are the only document types you can create at present with a script.



; You can add a new feature to an already existing part provided the name of the part in the script describing this new
feature is the same as the name of the part you want to add the new feature to. This capability applies to parts generated
either from a script or from the Part Design workbench.

Comments

Multiline comments (/* ... */) are not supported. A single-line comment begins with a pair of forward slashes(//).

Spherel isa Sphere // Creates a sphere

/'l Val uates the Radi us property
Radi us = 15.0 ;

Variables

You declare variables explicitly in your script as follows:
ALPHA =45 deg ;

Unlike in most script languages, a variable's scope is not really determined by where you declare it. From anywhere in your
script, you can access a variable by using the ..\.. and ? operators. After the script is finished running, the variable declared
in your script still exists as a document parameter.

Capturing Data from the Geometry View

When creating an object or defining a property within your script, you may have to define objects such as surfaces, edges
or points. The Script Editor provides you with a contextual menu whereby you can capture the required data from the
geometry view. To capture data from the geometry view:

1. type the statement skeleton with the required parentheses and braces. For example:
Filletl isa Fillet () { }

2. right-click anywhere inside the parentheses and select the 'Get Edge’, 'Get Surface' or ‘Get Point' function from the
contextual menu.

Fillet? iza Fillet [ 14 1
) et Surface

Get Edge

et Point

3. in the geometry area, select the edge (or the face/point) whose data is to be captured.
The object data is inserted in your script:

Filletl isa Fillet("Face: (Brp: (Box1;2);None:())")
{ /1 object properties }

If need be, you can define or redefine the object properties within the braces.
Specifying Input Data

Parameters can be declared as input data.



Padl i sa CATPart

{
Part isa Part
{
i =0, Input : Integer;
Part Body i sa Body
{
P i sa Pad
{
EndLi m t\Length = 8mm | nput :Length;
}
}
}
}
Clicking 'Generate' displays a dialog box which prompts you to enter the data values.
Enter inputs
Rarametel S e A T YA
i Inteqger To be valuated
EndLimitsLength Length To be valuated
1] |+

W f ] J.ﬁ.ppl_l.lj

Enter one-by-one a value for each parameter and click Apply. Once all the data is entered, click OK to generate the
document.

Limitations

You should be aware of some restrictions:

Features as well as constraints can only be created in CATPart documents.
When a rotate or translate transformation is applied to a body, only the body first feature
is rotated or translated.
Instances of sketch-based features cannot be moved apart from their prototype.
Any parameter used as an argument in a formula should be preceded by the ? symbol.
The syntax X = 2 * Y is invalid and should be replaced with X =2 *? Y.
Unless a formula-defined parameter has not been initialized with the proper units, the
value calculated from the formula is dimensionless.

Y =0Kkg;

Y=2*?2X,;
[ A script error stops the reading and the execution of the script.

O OO 00



Body Object

Definition

A body isthe combination of several features within apart. It properties are the features which are embodied in it.

Example
BodyDoc isa CATPart -1{?! BodyvFan
{ 1
BodyPart isa Part
{
Body i sa Body
{ F iy rlli=| =
Spherel isa Sphere -
{ Eill Farameters
}Radl us = 15.0mm Jjﬁ F-HTEnui
Torusl isa Torus
{ |
| nner Radi us = 20. 0mm ; "! aphere]
SectionRadi us = 10. 0mm ; 3
} J '—E‘. oketch.d
} I !' [oris]

} -'ll'-—[:'_'fi Sketch.2




Box Object

Definition

A box is apad extruded from arectangular sketch. It is defined by three properties:
« the Length which isthe pad first limit
« the Width and the Height which define the initial sketch.

Example

Box i sa CATPart

{
BoxPart isa Part xy plane
Part Body i sa Body e F"lj'
{
Box1 i sa Box
{
Wdth = 20.0m;
Hei ght = 25.0m;
Length = 15.0m ;
}
}
}

}



Chamfer Object

Definition

A chamfer isa cut through the thickness of apart at an angle, giving asloping edge. It is defined by two properties:
« the ChamferRibbon.i\Angle
« the ChamferRibbon.i\Length1.

To specify a chamfer within your script, you must have a part open, then:

1. create a Chamfer by using theisafunction
Chanferl isa Chanfer () { }

2. right-click anywhere inside the parentheses and select the 'Get Edge' or the 'Get Surface' function from the contextual menu.
3. inthe geometry area, select the edge to be chamfered.

The edge definition isinserted inside the parentheses. A 45 deg chamfer is created by default. To modify the angle or Lengthl values, specify the
property value within the braces.

Example
Box i sa CATPart
{
BoxPart isa Part
{
Part Body is a Body
{
Box1 i sa Box
{
Wdth = 20.0m ;
Hei ght = 25. 0m;
Length = 15. 0m;
}
Get Surface
et Edge
Get Point
Chanfer isa Chanfer ( £ i )
{
}
}



Cone Object

Definition

A cone is a shaft created by rotating atriangular sketch. It is defined by two properties:
« theLength
. theRadius.

Unless otherwise specified, the length unit is the meter.

Example
Cone isa CATPart
{
ConePart isa Part
{
Par t Body i sa Body
{
Conel i sa Cone
{
Radi us = 20.0 ;
Length = 15.0
}
}
}




Cylinder Object

Definition

A cylinder is apad created by extruding a circular sketch. It is defined by two properties:
« thelLength
» theRadius.

Unless otherwise specified, the length unit is the meter.

Example

iii Cylinder]

Cylinderl isa CATPart
{

Part isa Part

{
Par t Body i sa Body

{
Cyl1 isa Cylinder
{
Radi us=15. Onm
Lengt h=30. Omm




Fillet Object

Definition

A fillet isacurved surface of a constant or variable radius that is tangent to, and that joins
two surfaces. Together, these three surfaces form either an inside corner or an
outside corner. It is defined by two properties:

« the CstEdgeRibbon.i\Radius

« theactivity.

To specify achamfer within your script, you must have a part open, then:
1. create aFillet by using the isafunction
Filletl isa Fillet () { }
2. right-click anywhere inside the parentheses and select the 'Get Edge' or the 'Get Surface' function
from the contextual menu.

3. inthe geometry area, select the edge or the face to be filleted.

The edge or face definition is inserted inside the parentheses. A 5mm radiusfillet is created by default. If
need be, specify a new radius value within the braces right after the fillet creation statement. Retrieve the
parameter name from the f(x) parameter list.

Example

Box i sa CATPart
{

BoxPart isa Part

{
Part Body i sa Body

{

Box1l i sa Box

{
Wdth = 2

/] Use the contextual nenu to retrieve
/] the surface definition
Filletl isa Fillet ("Face: (Brp:(Box1;2);None:())" )

{
Cst EdgeRi bbon. 1\ Radi us =1. 0;






Pad Object

Definition

A pad is afeature created by extruding a sketch. It can be defined by three properties.
« the sketch
« theFirstLimit\Length (StartLimit\Length)
« the SecondLimit\Length (EndLimit\Length).

If no sketch is specified, arectangular sketch is created by default. A limit which is not specified is set by
default to zero.

Unless otherwise specified, the length unit is the meter.

Example

/[l Inports the KweRectangl e docunent
I nport " ~Sanpl es\ Gener ati veKnow edge\ KweRect angl e. CATPart";
myDocunent i sa CATPart

{
myPart isa Part

{
Part Body i sa Body

{
Sketch i sa Sketch. 1

{}
PO isa Pad("Sketch")

{
EndLi m t\ Lengt h=40. Omm

}



Note: In the script
above, the PO pad is
created from the
Sketch.1 sketch which
isimported from the
KweRectangle. CATPart
file.

'15‘! Py Ciocurnent

& oy plane

& 7 nlane




Hole Object

Definition

A holeis an opening through afeature. It is defined by three properties:
« the Diameter
« theHoleLimit.1\Length
« the Activity (1 deactivates the Hole, 0 activates the Hole).

To specify ahole within your script, you must have a part open, then:
1. create aHole by using the isa function
Holel isa Hole () { }
2. right-click anywhere inside the parentheses and select the 'Get Point' function from the contextual menu.
3. inthe geometry area, indicate a point on a face to define the hole axis.
The hole definition isinserted inside the parentheses. If need be, modify any property by specifying a new value within the braces right after the hole
creation statement.

Example

Box i sa CATPart
{

BoxPart isa Part

{
Part Body i sa Body

{

Box1 i sa Box
{
Wdth = 20.0 ;
Hei ght 25.0 ;
Lengt h 15.0 ;

}
Hol el i sa Hol e("Face: (Brp: (Box1;2); None: ())",-7.0,-12.02, 14.9)

{

Di anet er =5. O;
Acti vi ty=0;







Pattern Object

Definition

A pattern isa set of similar features repeated in the same part. Two types of patterns can be created with CATIA: the
rectangular patterns and the circular patterns. At present, only rectangular patterns can be generated from a script. A
rectangular pattern is defined by the following properties:

« Nbl, the number of elements to be replicated along the first direction

« NDb2, the number of elementsto be replicated along the second direction
« Stepl, the element spacing along the first direction

« Step2, the element spacing along the second direction

o activity.

Syntax

patternl isa pattern [NunberlnDirl, NunberlnDir2] of feature_ to_be repeated
Example

Box i sa CATPart
{

BoxPart isa Part

{
Part Body i sa Body

{

Box1 i sa Box
{
Wdth = 20nm ;
Hei ght 20mm ;
Lengt h 10mm ;

}
Hol el isa Hole (...)

{
D aneter = 2.0mm
}
Patternl isa Pattern[3,4] of Holel
{
Stepl
St ep2
}

¥y plane

5. 0mMm
5. 0mMm




Shaft Object

Definition

A shaft is afeature created by rotating a sketch around and axis. A shaft has two attributes: the
StartAngle and the EndAngle. The sketch to be rotated must be imported from an external .CATPart
document. This external document must also include a rotation axis.

Example

| mport " ~\credocr3\ Sanpl es\ KneEl | i psis. CATPart";

myDocunent i sa CATPart

{
nmyPart isa Part

{
Par t Body i sa Body

{
Sketch isa Sketch.1 {}

SO isa Shaft("Sketch")

{
Start Angle = 20 deg ;

EndAngl e = 300 deg ;
}



Shell Object

Definition

A shell isahollowed out feature. It is defined by three properties:
« thelnnerThickness
« the OutsideThickness
« theActivity.

To specify a shell within your script, you must have a part open, then:

1. create a Shell by using the isafunction

Shelll isa Shell () { }
2. right-click anywhere inside the parentheses and select the 'Get Surface' function from the contextual menu.
3. inthe geometry area, select the face to be hollowed out.

The face definition isinserted inside the parentheses. A 1mm thick shell is created by default. If need be, modify any property by specifying a
new value within the braces right after the shell creation statement.

Example

Box i sa CATPart
{

BoxPart isa Part

{
Part Body i sa Body

{

Box1 i sa Box

}
Shell 1 isa Shell ( "Face: (Brp:(Box1;2);None:())" )




Torus Object

Definition

A torusis ashaft created by rotating a circular sketch aroung an axis. It is defined by two properties: the | nnerRadius and
the SectionRadius.

SectionBadius

InnetHadius

Unless otherwise specified, the length unit is the meter.

Example
Torus isa CATPart
{ 2 Tors
TorusPart isa Part oy o
{ & vy plane
{Part Body isa Body e
Torusl isa Torus & v plane
{ . A Farameters {
I nner Radi us = 20.0 m; SFRITIEE
SectionRadius = 10.0 m
}
}
}

}




ExpertRule & ExpertCheck Objects

Definition

Expert Rules and Expert Checks are features generated with the CATIA Expert Knowledge product. Rules and Checks are regrouped into rule sets. Rule
sets belong to arule base. When writing a script with rules and checks you must comply with the RuleBase/RuleSet hierarchy. Refer to the CATIA Expert
Knowledge product for more information on the concepts behind the expert rules and checks.

Expert rules as well as expert checks have two attributes:
« the Variables attribute which must be defined with the appropriate syntax and corresponds to the
« the RuleBody (or CheckBody) attribute which defines the rule (or check) statements.

Note: When specifying an attribute within arule or a check, you can use either syntax:

P.attributenanme orP\attri butenane where P denotes the features the rule or check appliesto (for example all the document padsiif the
Variables attribute has been set to "P:Pad").

Example

i mport "e:\users\cre\adel e\ credocr 3\ Sanpl es\ Gener at i veKnow edge\ KweRect angl e. CATPart " ;
ExpertRul e i sa CATPart

{
myPart isa Part

{

RBase i sa Rul eBase

{
RSet i sa Rul eSet

{
R isa ExpertRul e

{
Vari abl es="P: Pad";
Rul eBody="if P\ EndLi m t\Lengt h==10.0 P\ EndLi m t\ Lengt h=20.0";

}
C i sa Expert Check

{
Var i abl es="P: Pad" :
CheckBody="P\ EndLi m t\ Lengt h>10. 0";

}



}
Par t Body i sa Body

{
Sketch isa Sketch.1 {}

PO isa Pad("Sketch")
{
EndLi m t\ Lengt h=10. Onm

myFart

.,i
& x plane
& 7 plane
& 7y plane

|

J

mE FParameters

‘ ParntBody

=] E0
|‘I e E‘ sketch




Formulas

Definition

A feature attribute can be defined by aformula. There are two means to specify aformula:

« either by using the ? operator. The parameter definitions are scanned from the statement block
where the formulais defined to the outermost block of the script.

« or by specifying arelative path (..\..\). The parameter definition is searched for in the location
defined by the ..\ operators.

Both methods are examplified below.

Example 1

/1 A 20.0 mmlength cylinder is generated
Cylinderl isa CATPart
{

Part isa Part
{
L = 21.0mm
Par t Body i sa Body
{
L =12.0 mm;
Cyl1l isa Cylinder
{
L = 10. 0mm
Radi us=15. Onm
EndLi mt\Length = 2*?L;

}
Example 2

Il A 24.0 mmlength cylinder is generated
Cylinderl isa CATPart
{

Part 1isa Part

{
L = 21.0mm



Part Body i sa Body
{
L =12.0 mm;
Cyl1l isa Cylinder
{
Radi us=15. Onm
EndLi mt\Length = 2*?L;

}
Example 3

Cylinderl isa CATPart
{

Part isa Part
{
L = 21. 0nm
Par t Body i sa Body
{
L =12.0 mm;
Cyl1l isa Cylinder
{
Radi us=15. 0mm
EndLi m t\Length = 2*?L;
}
Il Cyl2 is generated with a 48.0 mm | ength
Cyl 2 isa Cylinder

{
Radius= 5.0 mm ;

EndLi mt\Length = 2* .. \..\Cyl 1\ EndLi m t\ Lengt h;



Import Function

Definition

Specifies a document file ((CATPart or .CATProduct) containing definitions to be reused or redefined in the
document to be generated. All the features and feature values in the imported file become available to the document
to be generated.

Importing adocument is:
« of interest whenever you want to retrieve a consistent set of definitions from an already existing document

« required whenever you need to create afeature by extruding a sketch (the script language does not allow you
to program the creation of a sketch).

Syntax

i nport (Fil eNane) ;

FileName is the name of the file which contains the document to be imported.
Y ou must enclose the document name within quotation marks and end the import statement with a semicolon (;).
Y ou can also use the ~ symbol to specify arelative path.

Example

i mport "e:\users\credocr 3\ Sanpl es\ Gener ati veKnow edge\ KweRect angl e. CATPart";



Isa Function

Definition
Creates atyped object or instantiates an object.

Syntax

(bj ect Nanme i sa Obj ect Type or(CbjectNane isa | nstanceNane

where:
« ObjectName isthe name of the object to be created.
« ObjectTypeisthetype of the object to be created.
« InstanceName is the name of the object to be instantiated.

Example

myDocunment isa CATPart

{
nyPart isa Part

{
Part Body i sa Body

{

/|l Sketch.1 is the nane of the object to be instanti ated
Sketch isa Sketch. 1



? (Question Mark in Formulas)

Definition

In aformula, specifies that the parameter value to be applied is the first parameter value read when
scanning the script from the statement block where the formula s defined to the outmost statement block.

Example

[l A 24.0 mmlength cylinder is generated
Cylinderl isa CATPart
{

Part isa Part
{
L = 21. Omm
Part Body i sa Body
{
L =12.0 mm;
Cyl'1l isa Cylinder
{
Radi us=15. Orm
EndLi m t\Length = 2*?L;



.\.. (Relative Path in Formulas)

Definition

Defines where the value of a parameter used as an argument in aformulaisto beread. A single..\ exits
the statement block where the formulais defined. The parameter value applied in the formulais then the
one defined in the parent feature scope. Any additional ..\ exits one additional statement block.

Example

Cylinderl isa CATPart
{

Part isa Part
{
L = 21. Omm
Part Body i sa Body
{
L =12.0 mm;
Cyl'1l isa Cylinder
{
Radi us=15. Orm
EndLi m t\Length = 2*?L;
}
/Il Cyl2 is generated with a 48.0 mm | ength
Cyl 2 isa Cylinder
{
Radius= 5.0 mm;
EndLi mt\Length = 2* .. \..\Cyl 1\ EndLi m t\ Lengt h;



Coaxiality Transformation

Definition

Makes coaxial two cylinders. To specify a coaxiality within your script, you must have a part open, then:

1. create acoaxiality constraint
constraints:
coaxiality( , );

2. right-click inside the parentheses before the comma and select the 'Get Surface' function from the
contextual menu.

3. inthe geometry area, select one of the surfaces to be constrained

4. right-click inside the parentheses after the comma and select the 'Get Surface' function from the
contextual menu.

5. inthe geometry area, select the other face to be constrained.

Example
Cylinderl isa CATPart
{
Part isa Part
{
Part Body i sa Body
{
Cyl 1 isa Cylinder
{
Radi us=15. Onm
Lengt h=30. Omm
}
Cyl 2 isa Cylinder
{
Radi us=15. Onm
Lengt h=30. Onm
constraints:
coaxiality(...,...)
}
}
}



Distance Constraint

Definition

Specifies a distance between two faces of two different features. To specify a distance within your script, you
must have a part open, then:

1. create adistance constraint
constraints:
di stance( , , );

2. right-click inside the parentheses before the comma and select the 'Get Surface' function from the
contextual menu.
3. inthe geometry area, select one of the faces to be constrained

4. right-click inside the parentheses after the first comma and select the 'Get Surface' function from the
contextual menu.
5. inthe geometry area, select the other face to be constrained

6. specify the distance value in the third parameter.

Syntax

constraints:
di stance(" Face: (Brp: (P; 2); None: ())", "Face: (Brp: (Q 1); None: ())", 20.0);

Example

Cone i sa CATPart
{

Part 1sa Part

{
Par t Body i sa Body

{
C i sa Cone
{
}
B 1 sa Box
{
constraints:
di stance(...,...,10.0);

}



plane

'u'l._ Flll"”l—'

plane




Position Constraint

Definition

Places a feature with respect to another.

Syntax
constraints:
position infront | front | rear | inrear |
onleft | left | right | onright |
below | bottom| top | above
at di stance.
above bottom below

onright




front infront inrear

Example

Box i sa CATPart
{ 1 Box
BoxPart isa Part

o wyrlane
{

Part Body i sa Body a2 plane
{ & 70 plane
Bi gBox i sa Box

{
Wdth = 20.0 ;
2
1

Parametears

Hei ght = 24.0
Length = 10.0 ;
}

Smal | Box i sa Box

Hei ght = 12.0 ;

Length = 5.0 ;

constraints:

position left ?BigBox at 30.0nmm

Wdth = 10.0 ;
1
5



Rotate Constraint

Definition

Rotates a feature by a given angle around the x, y and z axes.
constraints:
rotate anglel, angle2, angle3 ;

where:

anglel, angle2 and angle3 represent the angles of rotation (expressed in degrees) around the x, y and z axes.
The angles can be defined by aformula

Example

Rot ate i sa CATPart
{ -Ief?i Fotate
Part isa Part

{
Part Body i sa Body

{
Cl isa Cylinder

{
Radi us=40. Onm
Lengt h=100. Onm

}
C2 isa Cylinder
{

Radi us=40. Onm

Lengt h=100. OmMm
constrai nts:

rotate 0.0, 90. 0, 90. 0;




Translate Constraint

Definition

Moves afeature by a given amount along the x, y and z axes.
constraints:
translate x1, y1, z1 ;

where the amounts specified are given in meters.

Example
Transl ate i sa CATPart
{
Part isa Part
{
Par t Body i sa Body
{
Cl isa Cylinder
{
Radi us=40. Orm
Lengt h=100. Omm
}
C2 isa Cylinder
{
Radi us=40. Onm
Lengt h=100. Onm
constraints:
transl ate 100.0, 0.0, 0. O;
}
}
}



